Clustering and Principal Component Methods

Clustering Methods

Clustering Methods

- Principal Components Methods as a Preprocessing Step
- 3 Graphical Complementarity

Unsupervised classification

- Data set: table individuals \times variables (or a distance matrix)
- Objective: to produce homogeneous groups of individuals (or groups of variables)
- Two kinds of clustering to define two structures on individuals: hierarchy or partition

Hierarchical Clustering

Principle: sequentially agglomerate (clusters of) individuals using

- a distance between individuals: City block, Euclidean
- an agglomerative criterion: single linkage, complete linkage, average linkage, Ward's criterion

- ⇒ Eulidean distance is used in principal component methods
- ⇒ Ward's criterion is based on multidimensional variance (inertia) which is the core of principal component methods

Ascending Hierarchical Clustering

AHC algorithm:

Clustering Methods

- Compute the Euclidean distance matrix $(I \times I)$
- Consider each individual as a cluster
- Merge the two clusters A and B which are the closest with respect to the Ward's criterion:

$$\Delta_{ward}(A,B) = \frac{I_A I_B}{I_A + I_B} d^2(\mu_A, \mu_B)$$

with d the Euclidean distance, μ_A the barycentre and I_A the cardinality of the set A

Repeat until the number of clusters is equal to one

Ward's criterion

- Individuals can be represented by a cloud of points in \mathbb{R}^K
- Total inertia = multidimensional variance

With Q groups of individuals, inertia can be decomposed as:

$$\sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I_q} (x_{iqk} - \bar{x}_k)^2 = \sum_{k=1}^{K} \sum_{q=1}^{Q} I_q (\bar{x}_{qk} - \bar{x}_k)^2 + \sum_{k=1}^{K} \sum_{q=1}^{Q} \sum_{i=1}^{I_q} (x_{iqk} - \bar{x}_{qk})^2$$

Total inertia = Between inertia + Within inertia

Ward's criterion

⇒ Ward minimizes the increasing of within inertia

K-means algorithm

- 1 Choose Q points at random (the barycentre)
- 2 Affect the points to the closest barycentre
- 3 Compute the new barycentre
- 4 Iterate 2 and 3 until convergence

PCA as a preprocessing

With continuous variables:

Clustering Methods

- ⇒ AHC and k-means onto the raw data
- ⇒ AHC or k-means onto principal components

PCA transforms the raw variables into orthogonal principal components $F_{.1},...,F_{.K}$ with decreasing variance $\lambda_1 \geq \lambda_2 \geq ... \lambda_K$

- ⇒ Keeping the first components makes the clustering more robust
- ⇒ But, how many components do you keep to denoise?

MCA as a preprocessing

Clustering on categorical variables: which distance to use?

- with two categories: Jaccard index, Dice's coefficient, simple match, etc. Indices well-fitted for presence/absence data
- ullet with more than 2 categories: use for example the χ^2 -distance

Using the $\chi^2\text{-distance}\Leftrightarrow \text{computing distances from all the principal components obtained from MCA}$

In practice, MCA is used as a preprocessing in order to

- transform categorical variables in continuous ones
- delete the last dimensions to make the clustering more robust

MFA as a preprocessing

MFA balances the influence of the groups when computing distances between individuals

$$d^{2}(i,i') = \sum_{j=1}^{J} \frac{1}{\sqrt{\lambda_{j}}} \sum_{k=1}^{K_{j}} (x_{ik} - x_{i'k})^{2}$$

AHC or k-means onto the first principal components $(F_1, ..., F_Q)$ obtained from MFA allows to

- take into account the groups structure in the clustering
- make the clustering more robust by deleting the last dimensions

AHC onto the first 5 principal components from MFA

Individuals are sorted according to their coordinate $F_{.1}$

Why sorting the tree?

```
X \leftarrow c(6,7,2,0,3,15,11,12)
names(X) < - X
library(cluster)
par(mfrow=c(1,2))
plot(as.dendrogram(agnes(X)))
plot(as.dendrogram(agnes(sort(X))))
```

Clustering Methods

Partition from the tree

An empirical number of clusters is suggested $(\min_q \frac{W_q - W_{q+1}}{W_{q-1} - W_q})$

Hierarchical tree on the principal component map

Clustering Methods

Hierarchical tree gives an idea of the other dimensions

Partition on the principal component map

Continuous view (principal components) and discontinuous (clusters)

Cluster description by variables

$$\text{v.test} = \frac{\bar{x}_q - \bar{x}}{\sqrt{\frac{s^2}{l_q} \, \left(\frac{l - l_q}{l - 1}\right)}} \sim \mathcal{N}(0, 1) \qquad \quad H_0: \bar{x}_q = \bar{x}$$

with \bar{x}_q the mean of variable x in cluster q, \bar{x} (s) the mean (standard deviation) of the variable x in the data set, I_a the cardinal of cluster q

\$desc.var\$quanti\$'2'

-	v.test	Mean in	Overall	sd in	Overall	p.value
		category	mean	category	sd	
$0.passion_C$	2.58	6.17	4.61	0.79	1.18	0.01
O.citrus	2.50	5.40	3.66	0.22	1.37	0.01
$0.\mathtt{passion}_{\mathtt{S}}$	2.45	5.69	4.18	0.54	1.20	0.01
Typicity	-2.42	1.36	3.91	0.72	2.07	0.02
O.candied.fruit	-2.44	0.78	2.58	0.16	1.45	0.01
O.alcohol_S	-2.48	3.98	4.33	0.13	0.28	0.01
Surface.feeling	-2.52	2.63	3.62	0.12	0.77	0.01

Cluster description

Graphical Complementarity

 by the principal components (individuals coordinates): same description than for continuous variables

```
$desc.axes$quanti$'2'
       v.test Mean in Overall
                                   sd in
                                          Overall
                                                   p.value
              category
                          mean category
                                               sd
        2.20
                 1.39 7.77e-17
                                   0.253
                                             1.24
                                                    0.0276
Dim. 2
```

• by categorical variables : chi-square and hypergeometric test

- ⇒ Active and supplementary elements are used
- ⇒ Only significant results are presented

Cluster description by individuals

• parangon: the closest individuals to the barycentre of the cluster

$$\min_{i \in q} d(x_{i.}, \mu_q)$$
 with μ_q the barycentre of cluster q

• specific individuals: the furthest individuals to the barycentres of the other clusters (the individuals sorted according to their distance from the highest to the smallest to the closest barycentre)

$$\max_{i \in q} \min_{q' \neq q} d(x_{i.}, \mu_{q'})$$

Complementarity between hierarchical clustering and partitioning

Graphical Complementarity

- Partitioning after AHC: the k-means algorithm is initialized from the barycentres of the partition obtained from the tree
 - consolidate the partition
 - loss of the hierarchy
- AHC with many individuals: time-consuming
 - \Rightarrow partitioning before AHC
 - compute k-means with approximately 100 clusters
 - AHC on the weighted barycentres obtained from the k-means ⇒ top of the tree is approximately the same

Practice with R

```
res.hcpc <- HCPC(res.mfa)
##### Example of clustering on categorical data
data(tea)
res.mca <- MCA(tea,quanti.sup=19,quali.sup=20:36)
plot(res.mca,invisible=c("var","quali.sup","quanti.sup"),cex=0.7)
plot(res.mca,invisible=c("ind","quali.sup","quanti.sup"),cex=0.8)
plot(res.mca,invisible=c("quali.sup","quanti.sup"),cex=0.8)
dimdesc(res.mca)
res.mca <- MCA(tea,quanti.sup=19,quali.sup=20:36, ncp=10)
res.hcpc <- HCPC(res.mca)
```

CARME conference

Graphical Complementarity

International conference on Correspondence Analysis and Related MEthods

Agrocampus Rennes (France), February 8-11, 2011

R tutorials for corresp. ana. and related methods of visualization:

- S. Dray: multivariate analysis of ecological data with ade4
- O. Nenadić & M. Greenacre: correspondence analysis with ca
- S Lê: from one to multiple data tables with FactoMineR
- J. de Leeuw & P. Mair: multidimensional scaling using majorisation with smacof

Invited speakers: Monica Bécue, Cajo ter Braak, Jan de Leeuw, Stéphane Dray, Michael Friendly, Patrick Groenen, Pieter Kroonenberg

Bibliography

- Escofier B. & Pagès J. (1994). Multiple factor analysis (AFMULT package). Computational Statistics and Data Analysis, 121-140.
- Greenacre M. & Blasius J. (2006). Multiple Correspondence Analysis and related methods. Chapman & Hall/CRC.
- Husson F., Lê S. & Pagès J. (2010). Exploratory Multivariate Analysis by Example Using R. Chapman & Hall.
- Jolliffe I. (2002). Principal Component Analysis. Springer. 2nd edn.
- Lebart L., Morineau A. & Warwick K. (1984). Multivariate descriptive statistical analysis. Wiley, New-York.
- Le Roux B. & Rouanet H. (2004). Geometric Data Analysis, From Correspondence Analysis to Structured Data Analysis. Dordrecht: Kluwer.

Packages' bibliography

http://cran.r-project.org/web/views/Multivariate.html http://cran.r-project.org/web/views/Cluster.html

- ade4 package: data analysis functions to analyse Ecological and Environmental data in the framework of Euclidean Exploratory methods http://pbil.univ-lyon1.fr/ADE-4
- ca package (Greenacre and Nenadic) deals with simple, multiple and joint correspondence analysis
- cluster package: basic and hierarchical clustering
- dynGraph package: visualization software to explore interactively graphical outputs provided by multidimensional methods http://dyngraph.free.fr
- FactoMineR package

http://factominer.free.fr

- hopach package: builds hierarchical tree of clusters
- missMDA package: imputes missing values with multivariate data analysis methods

FactoMineR

A website with documentation, examples, data sets: http://factominer.free.fr

How to install the Rcmdr menu: copy and paste the following line of code in a R session

```
source("http://factominer.free.fr/install-facto.r")
```

A book:

Clustering Methods

Husson F., Lê S. & Pagès J. (2010). Exploratory Multivariate Analysis by Example Using R. Chapman & Hall.